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THE REACTION OF STRATIFIED ROTATING MEDIA TO LOCAL THERMAL EFFECTS* 

S.N. NBTBBBA 

The flows which arise due to the effect of local heat sources in a 

stratified liquid rotating around its vertical axis are studied in the 

Boussinesq approximation using the method of integral transformations. 

Both the stationary case and the non-stationary case, which corresponds 
to an instantaneous heat pulse, are studied. Polyhelical convection, 

the structure of which is determined by the relationship between the 

stratification and rotational parameters as well as by the values of the 

dissipative parameters of the mixture, is investigated. 

1. Formulation of the problem. Convective flows are described using the example 

when stable stratification in space, where a local source of heat acts with a specifiedintensity 

Qk, 2, t)t is created by changes in the concentration of a dissolved salt /l/ or changes in the 

concentration of suspended particles throughout the height of the liquid. The coefficients of 

kinematic viscosity v, thermal diffusivity x, and diffusion D of a salt are assumed to be non- 

zero and, in general, have different values. 

We shall describe the motion of a viscous thermally conducting medium which rotates around 

the vertical axis by means of a linear system of Navier-Stokes' equations in the Boussinesq 

approximation when there is axial symmetry (the origin of the rotating coordinate system is 

chosen to be at the point where the source acts. The angular velocity vector 51 is directed 

along the z-axis) 

~=-I+ +vAu,+fOu, 

2 = - P-' g + v(A + i2)vz + (pT'_d) g 

-$ =vAv~-fovr, ar + 
a (Fur) a (rq 

T==O 
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-$=x(A+r-2)T'+=+ +Ll(A+r-2)C'fr~, 
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Here vr, v, and vm are the radial, vertical and azimuthal components of the velocity of 

the medium, p is the pressure in the medium after the hydrostatic pressure has been subtracted, 

p is the density of the medium, g is the acceleration due to gravity, fi is the coefficient of 

thermal expansion of the medium, T' = T - T,, T is the temperature, T, is the temperature of 

the unperturbed medium, cm is the specific heat capacity of the medium at constant volume, 

c' = c - co, c is the ratio of the density of the salt to the density of the liquid, c0 (2) is 

the value of c in the unperturbed medium, and f,, = 2& is the value of the Coriolis parameter. 

2. Convection when v =x= D. Let us introduce the Stokes' stream function + and 

the azimuthal component of the vector potential B using the formulae 

1 arl, 
or=-_lx, 

1 a* 
vz=f-&-’ B=F’ll, (2.1) 

If the potential B is known, U, can be determined from the third equation of system (1.1). 

The flow is of a local nature and decays at infinity. In describing flows at distance which 

significantly exceed the characteristic dimensionofthe region of heat evolution, the quantity 
Q (r, z, t) in (1.1) may be replaced by &S (t) 6 (z) 8 (r). U d n er these conditions the system of 

Eqs.(l.l), taking (2.1) into account, together with the boundary conditions leads to the problem 

[G- ) VA aA+w,z(A-~)-tf~"~]u=-ws(t)6(z)~6(r) 

r=O, 00, 2=-t_C0, B = 0, 0; = rg; M = (p,c)-'BgQ, 

(2.2) 
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By using a Fourier transformation with respect to z, a Hankel transformation with respect 
tor, and a Laplace transformation with respect to t, the solution of problem (2.2) may be 
represented in the form 

exp(pt + AZ) Just x 

1 [p + v (sa + k~‘)]~ (s2 + k?) + oo2s2 + .fo2k~2)-’ ds dkl dp 

(2.3) 

(JI is a first-order Bessel function of the first kind). 

In (2.3) let us replace the variables as follows: 

z = R cos 0, r = R sin 8, Rx = 9 + r2 

k, = k cos (E, s = k sin cp, dk,ds = kdkdv 

(2.4) 

and carry out an inverse Laplace transformation takinq account of (2.4) 

rr,z m 

B=M \ j exp (- vk2t) sin klz 
i 0 

+ J1 (rs) co9 ‘p dkdq 

0 = (coo2 co2 ‘p + f cl * sin* (p)':~ 

Let us now substitute the expression for J,(rs) according to Bessel's integral formula 

n/a 
2 * 

JI (x) = -;E- s 
sin (xsincD)sin0 da 

0 

and integrate with respect to k. We obtain a new integral representation for the function 

B (R, 0, t) 

B=+i 5 sin ot cos2 ‘p (B+ $ B-) drD dq 
0 0 

(2.5) 

m*=sincDcosqsin8+sinqcosO 

This representation turned out to be convenient for investigating flow in the regions 

R(c 1/4% and R> 1/4vt where simple asymptotic expressions can be obtained for $ (R,O, t). 

Structure of the flow when Rev= (the viscous region). In this case the exponents 
in (2.5) can be put to unity, which leads to the expression 

Using the stationary-phase method when wet> 1, we obtain 

(2.G) 

It follows from relationships (2.6) that, in both cases, vibrations arise due to stable 
stratification with a slower decay of the vibrations in the case when f,, = oo>O. When there 

is neutral stratification (oO = 0), there are no vibrations if f,,> 0 and the rising flow 

+ (R, 0, t) - M*f,-', jot>>1 (2.7) 
occurs. 
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Fig.1 

structure of the flow when R>b’zt (the non-viscous region). 
In this region the influence of viscous effects disappears and, 

after application of the method of steepest descent, represent- 

ation (2.5) reduces to the expression 

Here, by replacing the variable tg* qtg-'8 = sill a and 

using the stationary-phase method when o,t> 1, we obtain, 

when f. # % 

(2.9) 

It is obvious from formulae (2.9) that, when o,t>i, two harminocs: $0 and $,,manifest 

themselves in the flow. The first harmonic with a frequency 0 = o0 = const is solely due 

to stratification while the second harmonic, with a frequency o = G, reflects the anisotropy 

of the medium which arises due to stratification and rotation. This harmonic describes the 

stratification of the flow on vortices which, by arranging themselves one above the other, 

create a multilevel structure of non-stationary convective flows (see Fig.1 where $ = 0 

corresponds to the straight lines). 

The nature of the flow changes abruptly when f. = co,,. Then, from (2.81, we have 

$ (R, 8, t) - MR-’ sin* 8 sin f,,t (2.10) 

and, in this case, the motion of the medium is coherent in the whole of space, no stratification 

occurs and the multilevel structure unfurlsintoan oscillating annular rotation with a vortex. 

It is obvious from (2.10) that, unlike the case when there is no stratification (2.71, 

gyroscopic waves are excited in the region R> Jr= (jo> 0). 

3. Convection when V>U> D. In the general case system (1.1) leads to the equation 

for B (r. 2, t) 

[A,90(A,2+~02~)+002AyAx(il-~)]B= (3.1) 

MA,.4& (t) 6 (2) -g 6 (r) 

Av =-+A, A,=-&xA, An=-+A 

which is of the fourth order with respect to time and of the tenth order with respect to the 

spatial variables. The analytical investigation of Eq.(3.1) does not give rise to any funda- 

mental difficulties but it is an enormous task and, for this reason, we shall consider a 
simpler case when f,, = 0. Then, Eq.(3.1) together with the conditions for the boundedness of 
the perturbations leads to the problem 

A"[ 
A,.4nA+~00~(A--$)] B= MAnG(t) S(z)+ (r) 

r=O,w, 2=+00, B=O 

(3.2) 

We note that, in this case, Eq.(3.2) is of a higher order than (2.2) which signifies the 
existence of additional properties for the convective flow (3.2). By applying integral 
transforms analgous to (2.2)-(2.4) to (3.2) and inverting the Laplace transform, we can 
represent the function B(R,O,t) in the form 

JI112 cc 

B=$lS (S, + S,) cos (kz cos cp) J1 (kr sin cp) k co9 cp dk dq (3.3) 
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la= [ (+X;;-D) ]“‘_(2#‘, v>n>D 

Depending on the physical processes determining the flow field (3.2), 13.3),we separate 
out the following space-time regions and regimes of motions. 

Gravitational vibrations and jet stream. We use the method of steepest descent and 
- 

stationary-phase method and, when R< )/4Dt, and coot> 1 in this region, we have 

(3.5) 

The function $,, is determined by the contribution of the spectrum S,(k) in the neighbour- 
hood of zero and represents vibrations which are essentially analogous to (2.6) when f. = 0. 

The function QX is determined by the spectrum S,(k) and describes a jet stream which 

decays monotonically with time and only arises in the case when x +D. This mode is dominant 
in (3.5) in the time interval (v/x) o,,-'< t < (Y/x)~ oo-‘. 

Dissipative structures and non-stationary vortices. When (v -x)(x -D)> 0, the simple 
poles of the spectra S,(k) and S,(k) are located on the real axisofwave numbers k. If 

+iiTt<R<~fGZ, and (Y'x)~'~o~-~ (( t< (~10)“~ o,,-~, the spectrum S,(k) in the neighbourhood 
of a pole is barely deformed with the passage of time, that is, it is quasistationary. By 

calculating the contribution of the pole of S,(k) and using the stationary-phase method, we 
have the following asymptotic expression for q: 

$ -M(~ovLL)-~'~~(~) sin [R&h (a)], R>l/3 
f(e)= sin'/20 {sin ((py- 0)[sin-2(Tv - 0) + '/scosP(py]}-'~~ 

772 (13) = COP qv sin (Q - e), vv (e) = I/, [e + 
arccos (-'is cos e)i 

(3.6) 

The asymptotic formula (3.6) shows that quasistationary cells with a characteristic size 

1 3, which is determined by formula (3.41, arise in the flow. 

The formation of these cells is attributable to the 

combined action of stratification and the significant 

difference between the exchange coefficients (v>x>D)since 

a slower transfer of salinity compared with the transfer of 

heat causes particles which have been cooled to settle at 

their own level of neutral buoyancy which leads to the 

formation of a local system of quasistationary disipative 

structures. The structure of the flow (2.5), (3.6) is depicted 

qualitatively in Fig.2. 

Fig.2 

In the region R> l/G formula (2.9) holds (when f. = 0). 
This formula describes a non-stationary multilevel system 

of vortices (Fig.1) which, in general, is independent of the 

dissipative characteristics of the medium. Here the flow 

is created both by the pressure field which is formed by the 
whole region of flow as well as by perturbations in the 

salinity c' which are generated by the source roz (1.1) /2/ which has been induced. 

4. Stationary convection from a point of heat for arbitrary v,x, IJ>O. In 

this case system (1.1) reduces to the problem 

r=O, 00, 2=ioO, B=O 

(4.1) 

By carrying out the procedure described by (2.3)-(2.51, we have the following integral 

representation for B(R,O): 

u = 13+ + B- (4.2) 
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0 (T), cp) = cos2 cp + I)* sin2 cp, q = foWo-', 1 = (2v,o,-1)’ ! 

b c 

Fig.3 

Asymptotic integration of (4.2) is possible in the regions R<l and R>, 1. 
Flow close to the source and the limits of applicability of the linear solution. Let us 

put the parameter R/l<1 in (4.2) and confine ourselves to the first approximation in the 

expansion of the functions B+ and B- with respect to this small parameter. Then, the 

determination of B(R,8) (and, correspondingly, of 9) reduces to looking up tabulated 

integrals. We obtain the following expressions for the stream function and the vertical 

velocity in this region: 

* = **f (rl) (4.3) 
,#* = MG”‘,,,“” (R sin 0)’ + 0 [WYI, 0, = u,*f (rl) 

According to /3/, the functions $* and v,* are determined when there is no rotation 

,(fo : 0). The function f(q) is expressed in terms of a Gauss hypergeometric function. As 11 

increases, the magnitude of f(q) decreases monotonically from a maximum value of unity when 

q= 0 to zero when q = CO. 

Formulae (4.3) reflect the nature of the stabilizing action of rotation (fo> 0) on con- 
vection. Consequently, the limits of applicability of the linear solution, which were obtained 

in /3/ in the case where there is no rotation, are sufficient. 
Structure of the flow remote from the source(R>l). Inthiscase,onintegrating with respect 

to @,the neighbourhood ofthepoint cD,=arcsin (tg 9itgR)makesthe main contributionto the integral 

B-. By integrating with respect to CD in (4.2) and then with respect to g, we obtain the ex- 

pression 

lli - Mn*vix-' (MD-' R cos I3)-1 (1 + $ tg2 0))"2, r> z> 1 (4.4) 

which determines the nature of the flow in the main cell close to the radial surface r>z> 1. 
In the region z>r>l the flow is vertically stratified into a number of cells which 

are described in /3/. Rotation leads to an increase in the angle of inclination of the bound- 

aries of the cells to the radial plane and, at the same time, the width of the main cell of 

(4.4) increases. Hence, as the rotation increases (as 11 increases) the cells are tilted 
and displaced into a region adjacent to the vertical axis, i.e. the horizontal orientation 
of the cells gradually changes to a vertical orientation. The effect of rotation on the 

structure of the flow is shown in Fig.3 usinq the stream lines obtained from a numerical 

calculation of (4.2) when q= 0.1 (a), q= 0.5 (b), and 11 = 1 (c). These cells, like Benard 
cells, are dissipative structures, the stable stationary state of which is maintained due to 

the combined action of buoyancy (when there is stratification), the pressure field, thermal 
diffusivity, viscosity and diffusion. 

The azimuthal velocity uy. System (1.1) leads to the following problem for the deter- 
mination of ulp in the stationary case: 

[v?A’ + coo2 (A - --$ + fo” $1 Ar, = aMfoP (z) 46 (r) 

r==O,m, z=+co: - ur$ = 0 

From (4.51, we have the followinq integral representation: 

uQ= Mnf,,v-"&"'q (.l+ + :1-) (4.6) 
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a) When R((l , we have from (4.6) 

Urn- Mv~~“~;“‘R~~-~ sin 0 cos 8F (q) (4.7) 

where F(q) is a monotonically increasing function, F(q)” q when ~)<1 and F(q)- r/i when n> 1. 
b) When R> 1 within the bounds of the region of the main cell r>Z>l (4.4), for VP from 

(4.6) we have the asymptotic form 

- ue- M~-“‘Y,‘%$‘R-‘~ ctg (0) P (q) (4.8) 

whereP($is well approximated by the function P(n)- n (1 + 11*)-'. The slower nature of the 
decrease in the azimuthal velocity (4.8) in this region than in the case of the radial and 

vertical velocities (4.4) should be noted. Formulae (4.7) and (4.8) enable one to establish 
the dependence of the intensity of the twisting v~((T,z) on the radius when z = const in the 

main cell. When R>l , the motion is close to the rotation of a solid body (uQ - r) while, 

when R>l, it is close to a potential vortex (UC - l/r). 

The author thanks A.S. Kabanov and O.V. Kaidalov for their discussion of the results and 

YU. K. Gormatyuk for his help in constructing the stream lines. 
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DEPENDENCE OF THE DISPERSION CURVES OF INTERNAL WAVES 
OF A STRATIFIED OCEAN ON THE VAISALA-BRENT FREQUENCY* 

V.V. RYNDINA 

Under the condition that the minimum of the Vaisala-Brent frequency (VBF) 

is greater than the Coriolis parameter, a parametric form of the dispersion 

curves of the internal gravitational waves in an ocean of constant depth 

with continuously variable VBF is obtained. This form is used when 

obtaining estimates of the dc displacements as a function of the VBF 

displacement and when isolating the VBF which admit of a unique restoration 
from a sequence of dispersion curves. 

1. Formulation of the problem. We consider a horizontal continuously stratified 

ocean of constant depth H. Its upper surface is the siy plane, and the z axis is directed 

vertically upwards. The dispersion curves of the internal gravitational waves are found /l/ 

as the eigenvalues o? = o&,'(k') of the boundary value problem 

w" p (2) W' + CL (3) --ox WZ k2W ~0, W(- H)= 11’(O)= 0 (1.1) 
g 
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